Category: Geology

Optimum performance with Leapfrog projects

By Tim Schurr

Have you noticed the “.aproj_data” folder that always appears along-side your Leapfrog project file?

 aproj_data-folder in Leapfrog Geo

If you’ve ever had to move or copy a project to another location, you’ve probably come across it, opened folder using explorer and discovered a whole raft of sub-folders and files and thought “What’s all of this?  Is this really my Leapfrog project?”

.aproj_data folder beside Leapfrog project

In this article, I will explain the reason why Leapfrog saves projects in seemingly such a bizarre way, then I’ll give you a couple of tricks on how to get the best performance and reliability out of your Leapfrog projects.

Continue reading

Creating accurate vein systems from complex data

By Jason McIntosh

Modelling multiple thin intersecting veins in 3D can be an arduous task, luckily the Leapfrog vein modelling tool is perfect for visualising thin intersecting vein systems. Complex vein systems are common in many geological settings, but for the purpose of this blog I’m going to focus on shear zone vein systems. So bear with me as I attempt to sum up the characteristics of metalliferous shear zone ore deposits and how they can be modelled using Leapfrog Geo in an easily digestible blog.

A shear zone is a discontinuity surface in the Earth’s crust and upper mantle. Depending on the characteristics of the shear zone genesis and later regional tectonics, shear zones can form economic gold, silver, copper, lead, zinc and molybdenum deposits. However, the formation of large mineral deposits is dependent on a number of factors.

Shear zones form in brittle/ductile transition zones as metamorphic facies are uplifted during orogenic collisions. They are mineralized throughout successive cycles consisting of increased and decreased fluid pressure phases. Metamorphic compression pressurizes the fluid and seismic activity reduces the pressure by allowing the fluid to invade the country rock along grain boundaries and fractures. The successive cycles allow fluid to disperse and regenerate, therefore allowing for incremental precipitation of incompatible elements such as gold within fractures and along grain boundaries.

Characteristic veins within the Brittle-Ductile transition zone. (Image sourced from USGS).

Continue reading

Leapfrog Geo significantly advanced in 2014

It has been a big year for Leapfrog Geo with the release of version 2.0 and 2.1. Significantly advanced in 2014, taking your modeling to new heights.

Significantly advanced in 2014. Let’s look at the major new features.

2.0 for advanced vein modelling

2.0 did not disappoint when it was released in July. With the most superior vein modelling in the industry, feedback from users has confirmed we were right to get excited. After all, when Product Manager Tim Schurr, described the vein modelling as ‘simply beautiful,’ we knew it was something special. So if you haven’t already tried out 2.0 what exactly are you missing?

Continue reading

Using Leapfrog Geo in unconventional ways

By Scott Briscoe

We are pleased to publish another guest blog this week! Scott Briscoe is a geologist who has worked in both exploration and mining roles in Nevada, California, Alaska and Western Australia.  He is a professional geologist currently doing exploration in Nevada.  His specialties include mapping, advanced geological modeling, leading teams, identifying and solving problems in the pursuit of finding ore. You can read more of his articles on his own blog Briscoe Geology. Below is the process Scott went through to visualize his earthquake data, using Leapfrog Geo.

 

Continue reading

Tritium plume evaluation using a new geo-modelling approach

By Gordon P.L.Scott
Newcastle University, School of Civil Engineering and Geosciences

We’re pleased to be able to publish out first guest blog this week! Gordon P.L.Scott, from Newcastle University, School of Civil Engineering and Geosciences, has kindly let us use his current research paper for our Leapfrog blog. Have a read of this fantastic article and learn how Leapfrog software helped Gordon with his research.

 

Summary: Evaluating tritium plume

The evaluation of a developing tritium plume using a new approach through the 3D characterisation of the hydrogeology in a complex glacial environment is presented through the use of new geological modelling software and spatially varying Kh and Kv within a lithofacies method.

 

Why monitor?

The main tritium waste repository in the UK is at the Drigg Low Level Waste repository in West Cumbria (Figure 1), where the waste is stored in a series of vaults excavated into the shallow drift sediments. Over the years, it has been proven (Henderson and Smith 2011) that tritium has been leaking from the depository, and found its way into the groundwater system. The presence of ‘tritiated’ water in the groundwater system is undesirable as it is a radioactive compound that is easily absorbed into the body and poses a risk to our DNA.

The tritium concentration in groundwater can be used to check the degree of confinement of an aquifer and the rate of flow of groundwater and provide data with which to validate the hydraulic parameters of the numeric model used to monitor the tritium plume.

Drigg LLWR location map, West Cumbria.

Drigg LLWR location map, West Cumbria.

Continue reading

Creating a continuous overburden surface

By Lorraine Tam

Often, generating a continuous overburden surface with uniform thickness from limited drilling is difficult, especially when it is not logged in a consistent manner.  Simply extracting the bottom contact of drillholes may produce a patchy result which will require a significant amount of manual editing.

Project area.

Plan view of the project area. Drillhole collar locations are shown in red. The overburden surface (in yellow) does not extend to where there is no data.

2D slice through the model.

A 2D slice through the model. The overburden is patchy because where there is no data, it crosses above the topography (shown in light green).

Continue reading

Modifying intrusion surfaces – Effect of Value Clipping on intrusions (part 2/2)

By Lisa Swinnard

Continued from part 1.

Adjusting the value clipping has an effect on the volume of the intrusion, as well as its continuity. The volume of the intrusion can be determined by right clicking the Output Volume > Properties, and the continuity of an intrusion is represented by the number of parts it comprises (fewer parts = greater continuity). Below is a series of examples that show how value clipping affects the volume and continuity of this intrusion.

Automatic Clipping (Lower and Upper Bound Equal +/- 21.66)

Automatic Clipping (Lower and Upper Bound Equal +/- 21.66)

Continue reading

Modifying intrusion surfaces – effect of value clipping on intrusions (part 1/2)

By Lisa Swinnard

There are several ways to edit and modify an “Intrusion” surface within a GM; of them, value clipping is often overlooked. This document is part one of two and will outline the procedure for modifying intrusion surfaces by value clipping, describe the importance and relevance of volume points, and explain how the two are connected.

1. Modifying intrusion surfaces by Value Clipping

Step 1 – Create a new geological model and intrusion surface

  • Within the GM, create a new intrusion surface.
  • Edit the surface accordingly, add a trend if necessary.

Step 2  – Modify the value clipping

  • To modify the value clipping, double click the intrusion surface in the project tree.
  • In the dialogue box that appears, click on the surfacing tab and check the “Show additional surfacing options” box.

Value clipping. Dialogue box. Surfacing tab. Leapfrog 3D.

Continue reading

Drillhole planning in Leapfrog Geo

By Andrew Cantwell

One of the major costs of an exploration project is the drilling program. Planning drillholes in 3D based on existing knowledge is an easy way to maximise the value of any future drilling, and can be achieved quickly and easily in Leapfrog Geo. This blog post will take you through the steps required to plan a drilling campaign in Leapfrog Geo, then set up a scene file so the field team can see where each drillhole should be going, as well as what lithology and grade it is expected to intercept, in 3D.

  • The first step is to define your project area – a good start is to import any existing data. This could include a topography surface, any existing drillholes, an aerial photograph or geological map, and GIS data such as lakes, rivers, access roads and tenement boundaries.
  • Once you have imported the existing data, you’ll be able to start visualising in 3D where an appropriate location is to place your collar. If you’ve created any geological or grade models, you can also visualise where your potential target is.
  • To create a planned drillhole, right click on the ‘Planned Drillholes’ folder, and click ‘Plan Drillhole’.
  • There are two options you can choose; you can either specify a collar location or a target location. We’ll specify a collar location as it is more common to have a known point on the topography to place your collar.

Example 1.

Continue reading

Leapfrog’s structural trend

By Peter Joynt

It is not often in geology that mineralisation or geological units behave in a consistent planar fashion. The earlier article on interpolation and anisotropy by Kirk Spragg outlined a detailed explanation of Leapfrog’s global trend and how it affects the interpolation of points. This article aims to give users an introduction to the application of structural trends and how they can be applied to a model to handle different situations.

What is a Structural Trend?

A structural trend is a generalisation of the global trend that allows changes in direction of continuity over a defined surface. Instead of being based on a plane like the global trend with the user defining the ellipsoid ratios, the structural trend is based on a surface. This surface can be any shape or orientation usually defined by geological constraints such as faulting, foliation etc. The surface is then effectively down sampled to determine the local trend at each point on the mesh to give the user an anisotropy that varies throughout the defined space. This makes the structural trend perfect for geological units or mineralisation that is not planar. The structural trend does not determine the final surface; this is still done by the interpolant and the data points used. In Leapfrog the default interpolant type is isotropic, which lets us more easily visualise trends that are often hard to pick up when looking at raw data. Figures 1, 2 and 3 show the difference between an isotropic interpolant, global trend and a structural trend.

Isotropic interpolant modeled in Leapgfrog software.

Figure 1: Isotropic interpolant

Continue reading