Tag: geological modelling

Leapfrog Geo significantly advanced in 2014

It has been a big year for Leapfrog Geo with the release of version 2.0 and 2.1. Significantly advanced in 2014, taking your modeling to new heights.

Significantly advanced in 2014. Let’s look at the major new features.

2.0 for advanced vein modelling

2.0 did not disappoint when it was released in July. With the most superior vein modelling in the industry, feedback from users has confirmed we were right to get excited. After all, when Product Manager Tim Schurr, described the vein modelling as ‘simply beautiful,’ we knew it was something special. So if you haven’t already tried out 2.0 what exactly are you missing?

Continue reading

Using Leapfrog Geo in unconventional ways

By Scott Briscoe

We are pleased to publish another guest blog this week! Scott Briscoe is a geologist who has worked in both exploration and mining roles in Nevada, California, Alaska and Western Australia.  He is a professional geologist currently doing exploration in Nevada.  His specialties include mapping, advanced geological modeling, leading teams, identifying and solving problems in the pursuit of finding ore. You can read more of his articles on his own blog Briscoe Geology. Below is the process Scott went through to visualize his earthquake data, using Leapfrog Geo.

 

Continue reading

Tritium plume evaluation using a new geo-modelling approach

By Gordon P.L.Scott
Newcastle University, School of Civil Engineering and Geosciences

We’re pleased to be able to publish out first guest blog this week! Gordon P.L.Scott, from Newcastle University, School of Civil Engineering and Geosciences, has kindly let us use his current research paper for our Leapfrog blog. Have a read of this fantastic article and learn how Leapfrog software helped Gordon with his research.

 

Summary: Evaluating tritium plume

The evaluation of a developing tritium plume using a new approach through the 3D characterisation of the hydrogeology in a complex glacial environment is presented through the use of new geological modelling software and spatially varying Kh and Kv within a lithofacies method.

 

Why monitor?

The main tritium waste repository in the UK is at the Drigg Low Level Waste repository in West Cumbria (Figure 1), where the waste is stored in a series of vaults excavated into the shallow drift sediments. Over the years, it has been proven (Henderson and Smith 2011) that tritium has been leaking from the depository, and found its way into the groundwater system. The presence of ‘tritiated’ water in the groundwater system is undesirable as it is a radioactive compound that is easily absorbed into the body and poses a risk to our DNA.

The tritium concentration in groundwater can be used to check the degree of confinement of an aquifer and the rate of flow of groundwater and provide data with which to validate the hydraulic parameters of the numeric model used to monitor the tritium plume.

Drigg LLWR location map, West Cumbria.

Drigg LLWR location map, West Cumbria.

Continue reading

Modifying intrusion surfaces – effect of value clipping on intrusions (part 1/2)

By Lisa Swinnard

There are several ways to edit and modify an “Intrusion” surface within a GM; of them, value clipping is often overlooked. This document is part one of two and will outline the procedure for modifying intrusion surfaces by value clipping, describe the importance and relevance of volume points, and explain how the two are connected.

1. Modifying intrusion surfaces by Value Clipping

Step 1 – Create a new geological model and intrusion surface

  • Within the GM, create a new intrusion surface.
  • Edit the surface accordingly, add a trend if necessary.

Step 2  – Modify the value clipping

  • To modify the value clipping, double click the intrusion surface in the project tree.
  • In the dialogue box that appears, click on the surfacing tab and check the “Show additional surfacing options” box.

Value clipping. Dialogue box. Surfacing tab. Leapfrog 3D.

Continue reading

Drillhole planning in Leapfrog Geo

By Andrew Cantwell

One of the major costs of an exploration project is the drilling program. Planning drillholes in 3D based on existing knowledge is an easy way to maximise the value of any future drilling, and can be achieved quickly and easily in Leapfrog Geo. This blog post will take you through the steps required to plan a drilling campaign in Leapfrog Geo, then set up a scene file so the field team can see where each drillhole should be going, as well as what lithology and grade it is expected to intercept, in 3D.

  • The first step is to define your project area – a good start is to import any existing data. This could include a topography surface, any existing drillholes, an aerial photograph or geological map, and GIS data such as lakes, rivers, access roads and tenement boundaries.
  • Once you have imported the existing data, you’ll be able to start visualising in 3D where an appropriate location is to place your collar. If you’ve created any geological or grade models, you can also visualise where your potential target is.
  • To create a planned drillhole, right click on the ‘Planned Drillholes’ folder, and click ‘Plan Drillhole’.
  • There are two options you can choose; you can either specify a collar location or a target location. We’ll specify a collar location as it is more common to have a known point on the topography to place your collar.

Example 1.

Continue reading

Leapfrog’s structural trend

By Peter Joynt

It is not often in geology that mineralisation or geological units behave in a consistent planar fashion. The earlier article on interpolation and anisotropy by Kirk Spragg outlined a detailed explanation of Leapfrog’s global trend and how it affects the interpolation of points. This article aims to give users an introduction to the application of structural trends and how they can be applied to a model to handle different situations.

What is a Structural Trend?

A structural trend is a generalisation of the global trend that allows changes in direction of continuity over a defined surface. Instead of being based on a plane like the global trend with the user defining the ellipsoid ratios, the structural trend is based on a surface. This surface can be any shape or orientation usually defined by geological constraints such as faulting, foliation etc. The surface is then effectively down sampled to determine the local trend at each point on the mesh to give the user an anisotropy that varies throughout the defined space. This makes the structural trend perfect for geological units or mineralisation that is not planar. The structural trend does not determine the final surface; this is still done by the interpolant and the data points used. In Leapfrog the default interpolant type is isotropic, which lets us more easily visualise trends that are often hard to pick up when looking at raw data. Figures 1, 2 and 3 show the difference between an isotropic interpolant, global trend and a structural trend.

Isotropic interpolant modeled in Leapgfrog software.

Figure 1: Isotropic interpolant

Continue reading

Building a geological model – Part 2 of 3

By Andrew Cantwell

This video continues on from part 1 of building a geological model in Leapfrog.

You won’t hear any narration in this video but captions have been provided to explain the basic steps. If you’re after a more detailed description of the model building process then please contact your local support team.

We recommend you view this video in full screen mode. It may take approximately 30 seconds after you press play to switch to High Definition (given your internet connection allows it)

The main steps in this video on building a geological model include:

  • How to create a new geological model
  • Creating depositional surfaces
  • Editing a surface using a polyline
  • Activating surfaces to produce volumes
  • Creating dykes
  • Editing interval selections
  • Adjusting the chronological order of the surfaces
  • Creating intrusions

If you missed part 1 you can view the post here

Continue reading

Video: Importing and manipulating data – Building a geological model in Leapfrog Geo – Part 1 of 3

By Andrew Cantwell

This video provides a short and simple introduction to importing data into Leapfrog, as well as manipulating the data to make it easier to model. It is the first video in a series of 3 that will be posted on our blog over the next couple of weeks. The video provides captions to explain the basic steps but does not include any narration or detailed description of the entire model building process which is covered in Leapfrog Geo Fundamentals training.

The main steps in this video about importing and manipulating the data include:

  • Importing drillholes
  • Selecting columns for import
  • Fixing errors in the drilling
  • Importing the topography points
  • Creating a topography & adjusting the resolution
  • Simplifying the geology by creating a grouped column
  • Using the interval selection tool to select intervals which can be split up

Part 2 of this video series is available here

Continue reading

Kickoff for the new Leapfrog blog

By Shaun Maloney

Shaun Maloney CEO ARANZ Geo Limited

Welcome to Leapfrog’s blog

I‘m fortunate to be asked to write the first Leapfrog blog and to set the scene for what we hope will be many thought-provoking blogs to come. No pressure then! Seriously though, we want this blog spot to open up a dialogue between anyone interested in geology and geological modelling in particular. So if that’s you, please get involved, we’re interested in what you have to say!

Continue reading