Tag: Leapfrog Geo

3D geological mapping: From 2D GIS maps to 3D modelling

By Antonio Celis

phot 1

 

Traditionally, geoscientists have translated their field data collection efforts into a digital version of a geological map, which is typically built using GIS software (e.g. ArcGIS). Consequently most companies will have large archives loaded with GIS information from their projects. With more companies now choosing to collect their field data using electronic devices it ultimately results in a large repository of GIS data.

Continue reading

Leapfrog 4.0 – Unlocking the value of Structural Data

We’d like to share some of the feedback we’ve received so far from users who are benefiting from Leapfrog 4.0’s new structural modelling tools and workflows. We hope this blog gives you the opportunity to compare your experience with others, motivates you to dive into modelling your structural data yourself or just encourages you to experiment!’

Structural Geology

Leapfrog 4.0 is a major release that introduces an entirely new structural data workflow and tools to import and clean structural data, identify patterns and then incorporate this valuable structural knowledge into your models.

“ One thing I really like is the easy and intuitive nature of loading and choosing the data you want to work with.The speed at which you can get an overall trend-will help in determining the general shape of wireframes (it’s fast). “

Continue reading

Sula Iron & Gold Case Study – use of Leapfrog Geo’s movie function as a key marketing tool

Multi-commodity exploration company Sula Iron and Gold plc have used Leapfrog Geo’s movie function as a key marketing tool in the Ferensola Gold Project, Sierra Leone.

Using the movie function, Sula’s Non-Executive Technical Director, Howard Baker, has produced an impressive presentation to communicate target scale and to lift the project’s profile to the wider investment community.

Continue reading

Client Paper: Rockmass classification – different ways of interpreting a 3D Leapfrog Geo model

We are grateful to Davi Newton Pinheiro da Costa Gomes, Geologist Engineer – Rock Mechanic at AngloGold Ashanti, for producing this paper. The paper is provided in the original Portuguese as well as English  , and aims to show how the rockmass classification of the mine known as Orebody V was performed, as well as different ways of interpreting a 3D geotechnical model.

Continue reading

Leapfrog and the Integra Gold Rush Challenge

The 2015 Integra Gold Rush Challenge was a crowd-sourcing competition inviting participants to help uncover the next big gold discovery in Canada’s Val-d’Ors, Quebec. Crowdsourcing offers mining an alternative to traditional approaches as it harnesses the accumulated wisdom of a wide and diverse group of individuals.

Leapfrog was the official 3D modelling partner. With access to over six terabytes of digital mining and exploration data, it was a great opportunity to showcase our powerful FastRBF™ engine. Over 1,300 participants registered to use the free Leapfrog Gold Rush licences we provided, including all of the five finalists.

 
Continue reading

Geotechnical data collection and presentation – It starts and ends with a vision

We’d like to share this article by Louie Human and Ben Jupp, Principal and Senior Consultants at SRK. The article gives some great advice on best practice approaches to Data Collection as the first step towards minimising uncertainty and input into the advanced technical assessment and design of a caving operation. The article goes on to stress the importance of using 3D visualisation tools such as Leapfrog in engineering, to make the understanding of the data in a spatial context possible.

The authors outline why combining robust data collection with software toolsets that visualise, interrogate and develop geotechnical models is so important and how these ultimately feed into the mine design and decision making process and impact on the safety and economics of recovery.

The article first featured in AusIMM Bulletin in August this year: http://bit.ly/2dPsZa9

 

 

Continue reading

Point selection in Leapfrog Geo 3.1

By Peter Joynt

As you may know, we have recently released Leapfrog Geo 3.1 – this new release adds 3D point selection, a relatively simple feature that unlocks a number of new workflows. I am going to show you a few of these workflows – and hopefully it helps identify others that will fit your unique problems.

The point selection tool works in a similar way to interval selection, which has been available in Geo for some time. Interval selection is extremely useful for reclassifying poorly logged intervals and picking vein and dyke segments out of large complex drillhole datasets in 3D. The workflow is based around a simple to use 3D paint brush tool which, when combined with in-scene slicing and query filters, lets you quickly select and re-classify segments. We have now adapted this tool to be used with points, and allowed the creation of new category selection columns on points. Below are three examples of ways point selection can be used in your projects.

 

Selection of collars

Have you ever worked with a large drillhole dataset that has multiple prospects but no column in the database that can be used to separate them? This is a situation where the point selection tool can be useful. You can easily select a subset of drillholes in 3D and assign them a category. On top of this, you can apply query filters to give you flexibility for modelling and visualisation. The selection itself can be carried out directly on the collar table in the Drillhole Data folder.

Collar selection

Continue reading

Modelling with the offset surface tool

By Jason McIntosh

Leapfrog has a new surface modelling tool available in the Geological modelling toolset! The offset surface tool will be available to users who have the latest version of Leapfrog Geo or Geothermal. It’s designed to enable a greater degree of flexibility when modelling complex stratified geology, particularly from heterogeneous data. The offset surface tool appropriates all the current dynamic functionality available in the existing geological modelling surface options.

So how can the new tool be used to model such deposits? Users of Geo 2.2.1 and earlier may already be familiar with the existing offset tool that was located in the meshes folder. The new tool incorporates much of the same functionality but supersedes the earlier version with improved algorithms and additional editing options. The new functionality is well suited for modelling faulted, stratified deposits.

Folded and faulted offset surface stratigraphy.

Folded and faulted offset surface stratigraphy.

Continue reading

Making the most of Leapfrog for flow modelling: Part 2

By Jason McIntosh

Continued from part 1 – Making the most of Leapfrog for Flow Modelling.

Generate and evaluate a finite element grid

Finally to generate a FEFLOW model right click ‘Flow Models’ in the project tree and select ‘New 2D FEFLOW Model’. Set the element size and boundary from either a GIS line, polyline or a GM. Next expand the grid, right click ‘grid’ and select ‘New feature’. Within the dialogue add any ‘Point’, ‘Line’ or ‘Polygon’ features you wish to refine the grid with. Select ‘Simplify Feature’ to reduce or increase the number of points used for the boundary prisms. Next double click the grid, in the ‘Features’ tab and activate any features you wish to build detail around and the number of refinement steps. Within the ‘Boundary’ tab select either a rectangular boundary or a custom boundary by selecting ‘From another object’.

2D FEFLOW grid with refined cells about the collar locations.

2D FEFLOW grid with refined cells about the collar locations.

Continue reading

Making the most of Leapfrog for flow modelling: Part 1

By Jason McIntosh

Simulating fluid flow, mass and heat transfer requires the synthesis of geological models with a multitude of parameters, the process is complex. So how can Leapfrogs modelling functionality be used to streamline it? 

Interoperability with FEFLOW and MODFLOW allows Leapfrog Hydro, Geothermal and Hydrology module users to interpolate initial simulation parameters and apply them to geologically constrained finite element and finite difference grids. For the purpose of this blog I will demonstrate the capabilities by modelling an aquifer system in Leapfrog Geo, simulating it in FEFLOW and viewing the time series in Leapfrog.

Aquifer systems are comprised of permeable porous water bearing aquifers and impermeable aquitards. Both have variable permeability and porosity within the sedimentary units they are comprised of, the units themselves pinch-out and diverge within stratified layers of sediment. Stratified drift aquifers are among the most challenging of such systems, as a result of the complex depositional environments they derive from.

Continue reading